Enhancement of photocatalytic H2 evolution of eosin Y-sensitized reduced graphene oxide through a simple photoreaction

نویسندگان

  • Weiying Zhang
  • Yuexiang Li
  • Shaoqin Peng
  • Xiang Cai
چکیده

A graphene oxide (GO) solution was irradiated by a Xenon lamp to form reduced graphene oxide (RGO). After irradiation, the epoxy, the carbonyl and the hydroxy groups are gradually removed from GO, resulting in an increase of sp(2) π-conjugated domains and defect carbons with holes for the formed RGO. The RGO conductivity increases due to the restoration of sp(2) π-conjugated domains. The photocatalytic activity of EY-RGO/Pt for hydrogen evolution was investigated with eosin Y (EY) as a sensitizer of the RGO and Pt as a co-catalyst. When the irradiation time is increased from 0 to 24 h the activity rises, and then reaches a plateau. Under optimum conditions (pH 10.0, 5.0 × 10(-4) mol L(-1) EY, 10 μg mL(-1) RGO), the maximal apparent quantum yield (AQY) of EY-RGO24/Pt for hydrogen evolution rises up to 12.9% under visible light irradiation (λ ≥ 420 nm), and 23.4% under monochromatic light irradiation at 520 nm. Fluorescence spectra and transient absorption decay spectra of the EY-sensitized RGO confirm that the electron transfer ability of RGO increases with increasing irradiation time. The adsorption quantity of EY on the surface of RGO enhances, too. The two factors ultimately result in an enhancement of the photocatalytic hydrogen evolution over EY-RGO/Pt with increasing irradiation time. A possible mechanism is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PtNi Alloy Cocatalyst Modification of Eosin Y-Sensitized g-C3N4/GO Hybrid for Efficient Visible-Light Photocatalytic Hydrogen Evolution

An economic and effective Pt-based alloy cocatalyst has attracted considerable attention due to their excellent catalytic activity and reducing Pt usage. In this study, PtNi alloy cocatalyst was successfully decorated on the g-C3N4/GO hybrid photocatalyst via a facile chemical reduction method. The Eosin Y-sensitized g-C3N4/PtNi/GO-0.5% composite photocatalyst yields about 1.54 and 1178 times h...

متن کامل

A novel amorphous CoSnxOy decorated graphene nanohybrid photocatalyst for highly efficient photocatalytic hydrogen evolution.

A novel amorphous cobalt tin composite oxide decorated with graphene nanohybrid (CoSnxOy/G) sensitized by Eosin Y (EY) exhibited excellent photocatalytic hydrogen evolution activity (974.6 μmol for 3 h) under visible light irradiation. The highest AQE of EY-CoSnxOy/G of 20.1% was achieved at 430 nm.

متن کامل

Nanotitania composite assembled with Graphene oxide for Photocatalytic degradation of Eosin Yellow under Visible light

Visible light responsive Graphene oxide (GO) nanotitania composite was synthesized and its photocatalytic activity was investigated for the degradation of Eosin Yellow (EY). The nanocomposite was synthesized by organic solvent free-controlled hydrolysis of titanium tetrachloride (TiCl4) exfoliated with 10 wt. % (0.5 g) of the as prepared GO particles under ultrasonication through in-situ additi...

متن کامل

Efficient Photocatalytic Hydrogen Evolution by Iron Platinum Loaded Reduced Graphene Oxide

The production of hydrogen (as a clean energy carrier that could replace fossil fuels) nowadays attracts much attention because of environmental pollution and energy demands1–3. Recently, hydrogen evolution technologies, such as production by steam reforming4, electrolysis5, degradation of organic pollutants in wastewater6, and photoelectrochemical splitting of water7 have been investigated. Am...

متن کامل

Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphene nanosheets toward highly efficient photocatalytic H2 evolution.

We report the development of a highly efficient photocatalytic system by immobilizing high-quality CdS quantum dots and dendritic Pt nanocrystals on thiol-functionalized graphene substrates. We have demonstrated that the use of QDs with compact sizes leads to a dramatically enhanced performance in comparison with their bulk counterparts. Our design allows for systematic examination of the impac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014